Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310700, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483007

RESUMO

Single-cell mass spectrometry (MS) is significant in biochemical analysis and holds great potential in biomedical applications. Efficient sample preparation like sorting (i.e., separating target cells from the mixed population) and desalting (i.e., moving the cells off non-volatile salt solution) is urgently required in single-cell MS. However, traditional sample preparation methods suffer from complicated operation with various apparatus, or insufficient performance. Herein, a one-step sample preparation strategy by leveraging label-free impedance flow cytometry (IFC) based microfluidics is proposed. Specifically, the IFC framework to characterize and sort single-cells is adopted. Simultaneously with sorting, the target cell is transferred from the local high-salinity buffer to the MS-compatible solution. In this way, one-step sorting and desalting are achieved and the collected cells can be directly fed for MS analysis. A high sorting efficiency (>99%), cancer cell purity (≈87%), and desalting efficiency (>99%), and the whole workflow of impedance-based separation and MS analysis of normal cells (MCF-10A) and cancer cells (MDA-MB-468) are verified. As a standalone sample preparation module, the microfluidic chip is compatible with a variety of MS analysis methods, and envisioned to provide a new paradigm in efficient MS sample preparation, and further in multi-modal (i.e., electrical and metabolic) characterization of single-cells.

2.
Adv Mater ; : e2310212, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236647

RESUMO

Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min-1 . It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.

3.
Sci Adv ; 10(1): eadl0501, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181086

RESUMO

Conventional imaging systems can only capture light intensity. Meanwhile, the lost phase information may be critical for a variety of applications such as label-free microscopy and optical metrology. Existing phase retrieval techniques typically require a bulky setup, multiframe measurements, or prior information of the target scene. Here, we proposed an extremely compact system for complex amplitude imaging, leveraging the extreme versatility of a single-layer metalens to generate spatially multiplexed and polarization phase-shifted point spread functions. Combining the metalens with a polarization camera, the system can simultaneously record four polarization shearing interference patterns along both in-plane directions, thus allowing the deterministic reconstruction of the complex amplitude light field in a single shot. Using an incoherent light-emitting diode as the illumination, we experimentally demonstrated speckle-noise-free complex amplitude imaging for both static and moving objects with tailored magnification ratio and field of view. The miniaturized and robust system may open the door for complex amplitude imaging in portable devices for point-of-care applications.

4.
Small ; 19(45): e2303416, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37438542

RESUMO

Reflecting various physiological states and phenotypes of single cells, intrinsic biophysical characteristics (e.g., mechanical and electrical properties) are reliable and important, label-free biomarkers for characterizing single cells. However, single-modal mechanical or electrical properties alone are not specific enough to characterize single cells accurately, and it has been long and challenging to couple the conventionally image-based mechanical characterization and impedance-based electrical characterization. In this work, the spatial-temporal characteristics of impedance sensing signal are leveraged, and an impedance-based multimodal electrical-mechanical flow cytometry framework for on-the-fly high-dimensional intrinsic measurement is proposed, that is, Young's modulus E, fluidity ß, radius r, cytoplasm conductivity σi , and specific membrane capacitance Csm , of single cells. With multimodal high-dimensional characterization, the electrical-mechanical flow cytometry can better reveal the difference in cell types, demonstrated by the experimental results with three types of cancer cells (HepG2, MCF-7, and MDA-MB-468) with 93.4% classification accuracy and pharmacological perturbations of the cytoskeleton (fixed and Cytochalasin B treated cells) with 95.1% classification accuracy. It is envisioned that multimodal electrical-mechanical flow cytometry provides a new perspective for accurate label-free single-cell intrinsic characterization.


Assuntos
Impedância Elétrica , Citometria de Fluxo , Citoplasma , Condutividade Elétrica , Membrana Celular
5.
ACS Sens ; 8(7): 2681-2690, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37347966

RESUMO

Electrical properties of single cells are important label-free biomarkers of disease and immunity. At present, impedance flow cytometry (IFC) provides important means for high throughput characterization of single-cell electrical properties. However, the accuracy of the spherical single-shell electrical model widely used in IFC has not been well evaluated due to the lack of reliable and reproducible single-shell model particles with true-value electrical parameters as benchmarks. Herein, a method is proposed to evaluate the accuracy of the single-cell electrical model with cell-sized unilamellar liposomes synthesized through double emulsion droplet microfluidics. The influence of three key dimension parameters (i.e., the measurement channel width w, height h, and electrode gap g) in the single-cell electrical model were evaluated through experiment. It was found that the relative error of the electrical intrinsic parameters measured by IFC is less than 10% when the size of the sensing zone is close to the measured particles. It further reveals that h has the greatest influence on the measurement accuracy, and the maximum relative error can reach ∼30%. Error caused by g is slightly larger than w. This provides a solid guideline for the design of IFC measurement system. It is envisioned that this method can advance further improvement of IFC and accurate electrical characterization of single cells.


Assuntos
Lipossomos , Microfluídica , Citometria de Fluxo/métodos , Impedância Elétrica , Eletrodos
6.
Lab Chip ; 23(11): 2531-2539, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37082895

RESUMO

As a label-free and high-throughput single cell analysis platform, impedance flow cytometry (IFC) suffers from clogging caused by a narrow microchannel as mechanical constriction (MC). Current sheath constriction (SC) solutions lack systematic evaluation of the performance and proper guidelines for the sheath fluid. Herein, we hypothesize that the viscosity of the non-conductive liquid is the key to the performance of SC, and propose to employ non-conductive viscous sheath flow in SC to unlock the tradeoff between sensitivity and throughput, while ensuring measurement accuracy. By placing MC and SC in series in the same microfluidic chip, we established an evaluation platform to prove the hypothesis. Through modeling analysis and experiments, we confirmed the accuracy (error < 1.60% ± 4.71%) of SC w.r.t. MC, and demonstrated that viscous non-conductive PEG solution achieved an improved sensitivity (7.92×) and signal-to-noise ratio (1.42×) in impedance measurement, with the accuracy maintained and free of clogging. Viscous SC IFC also shows satisfactory ability to distinguish different types of cancer cells and different subtypes of human breast cancer cells. It is envisioned that viscous SC IFC paves the way for IFC to be really usable in practice with clogging-free, accurate, and sensitive performance.


Assuntos
Citometria de Fluxo , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Viscosidade , Constrição , Impedância Elétrica , Microfluídica , Humanos , Linhagem Celular Tumoral , Polietilenoglicóis/química
7.
Small Methods ; 7(7): e2201492, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36950762

RESUMO

Non-invasive and rapid imaging technique at subcellular resolution is significantly important for multiple biological applications such as cell fate study. Label-free refractive-index (RI)-based 3D tomographic imaging constitutes an excellent candidate for 3D imaging of cellular structures, but its full potential in long-term spatiotemporal cell fate observation is locked due to the lack of an efficient integrated system. Here, a long-term 3D RI imaging system incorporating a cutting-edge white light diffraction phase microscopy module with spatiotemporal stability, and an acoustofluidic device to roll and culture single cells in a customized live cell culture chamber is reported. Using this system, 3D RI imaging experiments are conducted for 250 cells and demonstrate efficient cell identification with high accuracy. Importantly, long-term and frequency-on-demand 3D RI imaging of K562 and MCF-7 cancer cells reveal different characteristics during normal cell growth, drug-induced cell apoptosis, and necrosis of drug-treated cells. Overall, it is believed that the proposed 3D tomographic imaging technique opens up a new avenue for visualizing intracellular structures and will find many applications such as disease diagnosis and nanomedicine.


Assuntos
Imageamento Tridimensional , Tomografia , Tomografia/métodos , Imageamento Tridimensional/métodos , Microscopia/métodos , Diferenciação Celular , Apoptose
8.
Small Methods ; 6(7): e2200325, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595712

RESUMO

Mechanical properties of single cells are important label-free biomarkers normally measured by expensive and complex imaging systems. To unlock this limit and allow mechanical properties comparable across different measurement platforms, camera-free intrinsic mechanical cytometry (CFIMC) is proposed for on-the-fly measurement of two major intrinsic mechanical parameters, that is, Young's modulus E and fluidity ß, of single cells. CFIMC adopts a framework that couples the impedance electrodes with the constriction channel spatially, so that the impedance signals contain the dynamic deformability information of the cell squeezing through the constriction channel. Deformation of the cell is thus extracted from the impedance signals and used to derive the intrinsic mechanical parameters. With reasonably high throughput (>500 cells min-1 ), CFIMC can successfully reveal the mechanical difference in cancer and normal cells (i.e., human breast cell lines MCF-10A, MCF-7, and MDA-MB-231), living and fixed cells, and pharmacological perturbations of the cytoskeleton. It is further found that 1 µM level concentration of Cytochalasin B may be the threshold for the treated cells to induce a significant cytoskeleton effect reflected by the mechanical parameters. It is envisioned that CFIMC provides an alternative avenue for high-throughput and real-time single-cell intrinsic mechanical analysis.


Assuntos
Análise de Célula Única , Linhagem Celular , Módulo de Elasticidade , Impedância Elétrica , Eletrodos , Humanos , Análise de Célula Única/métodos
9.
Lab Chip ; 22(2): 240-249, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34849522

RESUMO

Single-cell impedance flow cytometry (IFC) is emerging as a label-free and non-invasive method for characterizing the electrical properties and revealing sample heterogeneity. At present, most IFC studies utilize phenomenological parameters (e.g., impedance amplitude, phase and opacity) to characterize single cells instead of intrinsic biophysical metrics (e.g., radius r, cytoplasm conductivity σi and specific membrane capacitance Csm). Intrinsic parameters are normally calculated off-line by time-consuming model-fitting methods. Here, we propose to employ neural network (NN)-enhanced IFC to achieve both real-time single-cell intrinsic characterization and intrinsic parameter-based cell classification at high throughput. Three intrinsic parameters (r, σi and Csm) can be obtained online and in real-time via a trained NN at 0.3 ms per single-cell event, achieving significant improvement in calculation speed. Experiments involving four cancer cells and one lymphocyte cell demonstrated 91.5% classification accuracy in the cell type for a test group of 9751 cell samples. By performing a viability assay, we provide evidence that the IFC test per se would not substantially affect the cell property. We envision that the NN-enhanced real-time IFC will provide a new platform for high-throughput, real-time and online cell intrinsic electrical characterization.


Assuntos
Redes Neurais de Computação , Análise de Célula Única , Citoplasma , Capacitância Elétrica , Impedância Elétrica , Citometria de Fluxo/métodos
10.
Lab Chip ; 21(13): 2486-2494, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34047733

RESUMO

Successful single-cell isolation is a pivotal technique for subsequent biological and chemical analysis of single cells. Although significant advances have been made in single-cell isolation and analysis techniques, most passive microfluidic devices cannot deterministically release trapped cells for further analysis. In this paper, we present a novel microfluidic device that can achieve high-efficiency cell trapping, which can then be released in a deterministic order. The device contains an array of trapping sites, a main channel, a trigger channel, and an air channel. Two types of capillary valves are configured along the channels. As these capillary valves can be automatically opened in a predefined pattern, the incoming cells can be spontaneously and sequentially trapped into separate trapping sites. After trapping, the individual trapped cells can be released from their sites in a last-trapped-first-released manner by applying pressure from the trigger channel to counteract against the pressure from the main channel. The theoretical model of the trapping and release flow field is established respectively to describe the conditions required for trapping and release. Experiments using MCF-7 cells demonstrated the capability of our device for deterministic single cell trapping and release. We envision that our method constitutes a useful sample preparation platform for single cell analysis.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Separação Celular , Humanos , Modelos Teóricos , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...